Hall Ticket Number:

Time: 3 hours

Code No. : 33012

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD M.C.A. (CBCS) III-Semester Main Examinations, December-2018

Operations Research

Max. Marks: 60

Note: Answer ALL questions in Part-A and any FIVE from Part-B

No.	Stem of the question	Μ	L	CO	PC
	Part-A (10 × 2 = 20 Marks)				
1.	What is the canonical form of a LPP?	2	1	1	1
2.	State the general linear programming problem and define (i) feasible solution and (ii) basic feasible solution.	2	1,2	1	1
3.	List any three approaches used with transportation problem, for determining the starting solution.	2	1	2	1
4.	What do you understand by degeneracy in a transportation problem?	2	1	2	1
5.	Give the Linear Programming form of the assignment problem.	2	2	3	1
6.	What is Integer Programming?	2	2	3	1
7.	State the formula for EOQ under manufacturing model where shortages are allowed.	2	1	4	1
8.	What types of Games are solved graphically?	2	2	4	
9.	What is meant by Minimize and Maximize?	2	2	5	
10.	Define EOQ.	2	1	5	
	Part-B $(5 \times 8 = 40 \text{ Marks})$				
11. a)	Solve by simplex method: Maximize $Z = 3x_1 + 5x_2 + 4x_3$ Subject to $2x_1 + 3x_2 \le 8$ $2x_2 + 5x_3 \le 10$ $3x_1 + 2x_2 + 4x_3 \le 15$	4	2	1	
	$x_1, x_2, x_3 \ge 0$				
b)	Solve the LPP Max $z = 2x_1 + 3x_2 + 5x_3$ Subject to $3x_1 + 10x_2 + 5x_3 \le 15$ $33x_1 - 10x_2 + 9x_3 \le 33$ $x_1 + 2x_2 + x_3 \ge 4$	4	2	1	
	$x_1, x_2, x_3 \ge 0$	-			
12. a)	Explain Transshipment Model – II.	4	2	2	
b)	Solve the transportation problem Destinations 1 2 3 0rigin 1 2 3 10 2 2 3 10 1 2 3 10 2 4 1 2 15 Demands $20 15 30$ capacities	4	2	2	

Code No. : 33

	A company is faced with the problem of assigning 4 machines to 6 different jobs (one machine to one job only). The profits are estimated as follows:	4	2	3	.4
	I CTCTTT I BENTTE DUIL				
	Machine A B C D				
	$1 \boxed{3} \boxed{6} \boxed{2} \boxed{6}$				
	2 7 1 4 4				
	Job 3 3 8 5 8				
	5 5 2 4 3				
	6 5 7 6 4				
	Solve the problem to maximize the total profit by branch and bound				
	technique.				
3. b)	Find the optimum integer solution of the integer programming problem:	4	3	3	2
	$Max Z = 7x_1 + 9x_2$				
	Subject to $-x_1 + 3x_2 \le 6$				
	$7x_1 + x_2 \le 35$				
	and x ₁ , x ₂ are non-negative integers				-
4. a)	A commodity is to be supplied at a constant rate of 200 units per day.	4	3	4	2
	Supplies for any amounts can be had at any required time, but each				
	ordering costs Rs. 50.00 costs of holding the commodity in inventory is Rs.				
	2.00 per unit per day while the delay in the supply of the items induces a				
	penalty of Rs. 10.00 per unit per delay of one day. Formulate the average				
	cost function of this situation and find the optimal policy (q, t) where t is				
	the reorder cycle period and q is the inventory level after re-order. What				
	should be the best policy if the penalty cost becomes infinite?				
b)	A company has a demand of 12,000 units/year for an item and it can	4	2	4	2
	produce 2000 such items per month. The cost of one setup is Rs. 400 and				
	the holding cost/unit/month is Rs. 0.15. Find the optimum lot size, max				
	inventory, manufacturing time, total time.				
15. a)	Find the optimum strategies and the value of the game	4	3	5	
a)			5	5	
	Y				
	X 4 -1 4 -1 2				
	2 2 3 -4 2				
	1 -3 1 0 -4				
	25 M 256 M			-	
b)	Solve graphically	4	2	5	
	B				
	Player A 1 2 3 4				
10	Selection DD		0	1	
16. a)		4	2	1	
	$Max z = 2x_1 + x_2$				
	Subject to $3x_1 + x_2 \ge 3$				
	$4\mathbf{x}_1 + 3\mathbf{x}_2 \ge 6$				
	$x_1 + 2x_2 \ge 2$				
	and $x_1, x_2 \ge 0$	1			

Contd... 3

b)	Find the initial basic feasible solution for the following transportation problem by VAM	4	2	2	2
	Destination centers				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	Requirements 200 225 275 250				
17.	Answer any <i>two</i> of the following:				
a)		4	2	3	2
	I II III IV				
	1 8 26 17 11				
	2 13 28 4 26				
	Subordinate 3 38 19 18 15 4 19 26 24 10				
	Find out how the tasks be allotted to man so as to optimize the total man- hours.				
b)	annual requirements, ordering one month usage at a time. Each part costs Rs. 20. The ordering cost per order is Rs. 15 and the carrying charges are 15% of the average inventory per year. You have been asked to suggest a more economical purchasing policy for the company. What advice would	4	2	4	2
	you offer, and how much would it save the company per year?				
c)	Solve the following game Player B $\begin{bmatrix} -1 & 2 & 1 \end{bmatrix}$	4	5	5	2
	Player A $\begin{bmatrix} -1 & 2 & 1 \\ 1 & -2 & 2 \\ 3 & 4 & -3 \end{bmatrix}$				

:: 3 ::

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 & 2)	57
2	Knowledge on application and analysis (Level-3 & 4)	30
3	*Critical thinking and ability to design (Level-5 & 6) (*wherever applicable)	13

ዀዀዀ